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This paper considers the problem of obtaining the best

subset of reqressors under a least absolute value criterion. The

model is the classic linear regression model with m explanatory

variables and a dependent variable. The importance of the

explanatory variables is measured by obtaining the minimum sum of

absclute deviations when only k of the m explanatory variables are

included in the model. An algorithm is presented to obtain the

"best" subset of size k, k =

Several algorithms to solve the best subset problem are

available when the criterion for evaluation is least squares.

However, recently statisticians have become increasingly aware of

the limitations of least squares and have popularized "robust-

resistant" estimation techniques. Least absolute values is such a

technique. Special purpose computer coaes which utilize the

simplex algorithm of linear programming are used to solve the

least absolute value regression problem.

This paper incorporates two of these specialized codes

within a branch-and-bound algorithm to solve the best subset

problem. The advantages and disadvantages of the two codes, one

primal and one dual, will be discussed. Also, a detailed

description f the branch-and-bound implementation and the results

of computational testing will be given. I.5 ;::
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AN ALORITHM TO SELECT THE BEST SUBSET FOR

A LEAST ABSOLUTE VAUJE REGRESSION PRO0BLEM

1. Introduction

In the experimental design models usinq regression analysis,

it is common practice to examine different mathematical model

formulations. As stated by Draper and Smith [6], there are two

opposing criteria for establishing a useful and efficient

regression equation. They are as follows:

(i) To make the equation useful for predictive purposes, it is

advantaqeous to include as many independent variables as

possible so that reliable fitted values can be determined.

(ii) Because of the costs, in terms of money, labor, and time,

involved in obtaining information about a large number of

independent variables and subsequently monitoring them, it

is preferable to formulate the regression equation with as

few independent variables as possible.

The compromise between these extremes leads to the notion of

selecting the best subset of independent variables, or the best

regression equation.

The problem of selecting variables has been well discussed

in the literature in relation to the minimization of the sum of

squared error criterion. The well-known procedures include

various methods of selection from all possible reqressions,

backward elimination, forward selection and the staqewise

regression procedure.
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In recent years, the least absolute value criterion has been

recommended in certain cases as an alternative to the least

squares (see (141). For investment models (see [12]) and for

economic models with errors having non-finite variance (see [7]),

the least absolute value criterion provides a more robust

estimator than the least squares criterion. Kennedv and Gentle

[9] provide an excellent review of solution procedures. It is the

purpose of this paper to inspect algorithmic procedures to obtain

the best subset of independent variables for a linear regression

model under a least absolute value criterion.

2. The Best Subset Regression Problem

To estimate parameters for a multivariate linear regression

model, the problem for the least absolute value criterion is

stated as follows.

Given a set of n observational measurements (yi, xil,

xi2,..., xim), i = 1,2,...,n, determine the values of the

parameters, , j E: J, which will

n
(1) minimize Z Yi - X Xii aj

B i=l jfJ

where J {l,2,...,m} is the index set of the parameters in the

model.

Charnes, Cooper and Ferguson [4] have shown that the optimal

values of the parameters in (1) can be obtained via a linear

programming forjaulation. Employing their result here, problem (1)

is equivalent to:
n

(2) Minimize [ (P. + N.)
i~l 1 1
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subject to

xi 1 9 + P'. - N. = yi, i=1,2,...,n,
j J

Pi > 0, Ni  > 0, i =1.2,...,n,

where Pi and Ni are, respectively, the positive and neqative

deviation associated with the i-th observation.

The "best" subset of a given number of indepentlent

variables, k, where k < m, is one which yields the minimum

objective value of all possible subsets of k variables from among

the set of m variables under oonsideration.

There are m!/[k!(m-k)!] ways of choosing k regressors from a

set of m regressors. In theory, each combination can be

enumerated and solutions obtained and analyzed to determine the

best subset of k regressors. However, total enumeration is

generally not computationally efficient. Recentlv, implicit

enumeration procedures have been developed to find the best subset

of k regressors withuut examining all possible subsets. Beale,

Kendall, and Marn [3], IaMotte and Hocking [10], and Furnival and

Wilson [81 developed procedures to achieve this purpose under the

least squares criterion. Two algorithms using the least absolute

value criterion have been reuorted. Roodman [15] gives a partial

enumerative search procedure using an upper boundinq simplex

algorithm to solve the dual of (2) and binary decision variables

to specify the subset of regressors being assigned in the

regression problem at each stage. Narula and Wellington [13] use

an enumerative procedure that employs both a primal and a dual

simplex algorithm along with a pre-optimality test which Tray
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indicate suboptimality before a simplex iteration.

The alqorithm proposed in this paper uses a branch-and-bound

technique to find the best subset regression. This algorithm has

features which are not present in the Roodman and Narula-

Wellington algorithms. It uses a binary tree for enumerative

purposes. Also, a rule for selectinq a Parameter to be restricted

is introduced. Two linear programming algorithms are implemented

separately to solve the least absolute value regression problems.

The first one is a dual approach developed by Armstrong and Kung

(2] while the other one is a primal method by Armstrong, Frome,

and Kung [i]. Both approaches utilize information obtained from

the solution of previous regressions to provide an advanced

starting solution for the least absolute value regression problem

currently considered. Like the Roodman and Narula-Wellington

algorithms, bounding tests are also considered in this best subset

regression algorithm.

The algorithm is presented in three parts. First, the

branch-and-bound framework is outlined. Next, the special

characteristics of this algorithm when using a dual linear

programming method are given. In the last part, the

implementation of the primal simplex approach within the branch

and-bound algorithm is described.

3. The Branch-and-Bound Framework

Enumerative algorithms are usuallv easier to understand if

they are related to a tree composed of nodes and branches. Here,

a node corresponds to a least absolute value regression problem
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containing a specified set of parameters. This subprohlem may be

stated and solved as a linear programminq Problem of the form

given by (2). The initial subproblem contains all the regression

parameters in the model. After a subproblem is solved, the

associated node is either fathomed or two descendants are created

from it. Fathoming occurs when it can be ascertained that no

regression problems of interest exist in any descendants of the

node. If two descendants are created, they differ in the states

of the parameters, where a parameter is forced out of the model

in one node and the same parameter is required to be included in

the model in the other node. The criterion for selectinq the

parameter to be restricted is the following.

From a list of free parameters (that is, the parameters that

are not fixed to be in or out of the model), it is advantageous to

select for restriction the parameter, which, when removed from the

model, gives the least change in the optimal objective value.

Thus, the best solutions should be examined earlier in the

algorithm. Other subproblems which yield inferior solutions need

not be solved. An intuitively appealing rule is to select the

free parameter whose removal from the model will result in the

smallest objective change during the first dual simplex iteration

of the subsequent problem.

(3) 6 r min {first iteration objective change when aj = 0}

where F is the index set of the free parameters. This rule is

based on the supposition that the first iteration reflects the

overall objective change.
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Once a narameter, Br' is chosen to be restricted, one of the

two descendant nodes deletes 8r from the problem, while the other

node forces ar to be included in the problem. Once a

specification is established in a parent problem, it must also be

satisfied in every descendant that follows. The restriction of

parameters and the creation of more branches and nodes continue

until there are no free parameters.

A solution tree for a four parameter problem is used for

illustrative purposes. The complete structure of the tree is

shown in Figure 1. It is assumed that the parameters to he fixed

based on (3) are in the following hierarchical fashion: B1, B 3,

and 2. The nodes in Figure 1 show the parameters included in

the model. At each node, the right hand branch indicates the

deletion of a specified parameter, and this parameter remains in

the model on the left branch.

As seen in Figure 1, more than one node corresponds to

problems with oarameters (1234), (234), (124). (123), (23), (24),

and (12) in the model. Solving a problem each time the associated

node is encountered would result in a series of needless

repetitive calculations. It is therefore important to construct

and traverse a tree in a way that requires the least amount of

effort and reduces redundant computations.

<figure 1 goes here>

The search procedure for selecting the best subset of all

sizes is described here. The selection of the best subset of k,

k+l,...,m parameters is a straightforward generalization of this

procedure. The computer code developed by the authors does handle
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the more general case.

In the implicit enumeration procedure, generally, not a]l

the subproblems need be solved to optimality. For a current

subproblem consisting of k parameters, if the objective value of

the optimal solution to this subproblem is greater than the best

objective value of previous subproblems of h parameters where

h < k the descendant nodes from the subproblem with k parameters

will not yield improved solutions. Thus these nodes need not he

examined.

Define zu to be the upper bound on the objective value of ank
optimal solution with k parameters in the subproblem. Initially,

every parameter is included in the moel, namely, J = {l,2,...,m}

and the values of zu, k = 1.2,...,m are set to infinity.k'

The tree is inspected using a last-in-first-out (LIFO)

branchinq rule. The subproblem chosen to be solved next is called

the current candidate problem. When two descendants are created

from the parent problem, the subproblem with a parameter removed

from the parent problem becomes the current candidate problem.

When no further progress can be made descending a branch, the

algorithm backtracks up the tree and chooses the most recently

created subproblem for inspection. Because of the LIFO branching

rule, the current candidate problem is created with a minimal

amount of effort and the tree can be described with parameter

length arrays. Two arrays IPAR and ISTAT are utilized to define

the current subproblem. The array IPAR is defined as follows:



-k if the k-th parameter is forced out of the

model at level i, i = 1, 2, ... ,

IPAR(i) = +k if the k-th parameter is required to be

included in the model at level i, i = 1, 2,

M.

The other array ISTAT has the following functions:

0 when the k-th parameter is free;

ISTAT(k) = 1 when the k-th parameter is forced in the nodel;

-l when the k-th parameter is forced out of the

model.

At any stage of the algorithm, the partial assignment of

subsets of parameters corresponds to a list of candidate problems.

Once a candidate problem (CP) is selected, it is solved via a

linear programming algorithm (fl] or (2]). The current solution

at any stage is used to indicate a starting procedure for the next

stage. A forward step consists of selecting a parameter based on

(3) and fixing it out of the model. A backward step consists of

requiring a free parameter to be included in the model. The

complete tree has been inspected when all entries of the ISTAT

array are positive.

A conceptual flowchart of the branch-and-bound procedure is

illustrated in Figure 2.

<figure 2 goes here>

4. The Application of the Branch-and-Bound Algorithm Using a Dual

Linear Programmirq Method

This section discusses how the dual linear programming

method developed by Armstrong and Kung [21 is implemented within
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the branch-and-bound algorithm described earlier. Two strategies

employing the dual method are inspected. The first strategy is

the use of a reoptimization start, and the second one is an

implementation of a more powerful bounding test.

The dual of problem (2) is:
n

(4) Maximize 7 iy.
i=l

subject to

7.x.. o j F J
i=l 1 ' 3i i , =,,. n

1 --

Tri > -ii= , , . ,n

The two fundamental procedures to solve linear programming

problems are the primal and dual algorithms. Because of the

symmetry of linear programs (the dual of the dual is the primal).

it is sometimes difficult to distinguish the two algorithms. The

dual algorithm applied to (4) is the same as the primal algorithm

applied to (2) and vice versa. A dual method will be termed to be

an algorithm that maintains a feasible solution to (4) and strives

to obtain a feasible solution to (2). A primal algorithm

maintains a feasible solution to (2) and strives to obtain a

feasible solution to (4). A detailed description of these two

algorithms are found in (11 and [2].

At each stage of the dual algorithm, the values of the

parameters are the simplex multipliers for (4). These multipliers

can be calculated as 6" = YBB - I where 9* has dimension m(J), the

cardinality of J, YB is a vector of dimension m(J) correspondinq

to the basic components of Y, where Y = (y],y 2 ... ,yn)T, and B1

is the current basis inverse of dimension m(J) by m(J).
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4.1 Reoptimization Start

The optimal basic solution to a parent problem is stored and

used as a start for the immediate descendant which has a parameter

removed from the parent problem. Thus, the dimension of a basis

for this descendant is one less than a basis for the parent

problem. The process of initializing the basis and solution for

the descendant is as follows. Let IB represent the index set of

the basic variables and NB represent the index set of the nonbasic

variables. Consider individually the constraints Bj = 0 for all

j ot forced in or out of the model by some previous restriction.

Perform minimum ratio tests to determine, for each possible new

restriction, the objective change during the first iteration and

the basic is to leave the basis during this iteration. Choose Fr

using (3). The observations associated with fr are removed from

the problem and ns is removed from the basis creating a new basis

of dimension one less than that of the immediate predecessor.

(5) Ts = {7j removed from basis when constraint er = 0 is addedi

The new solution is dual feasible and the linear programming

solution process can begin.

The variable leaving the basis will be set to the bound

prescribed by the ratio test. The remaining nonbasic variables

are set equal to their value in the optimal solution of the Parent

problem. The values for the basic variables are assigned to

satisfy the constraint equations. This start enables the

algorithm to determine an initial solution to the subproblem which

should be a reasonable approximation of the optimal solution. The

comnutational experience shows the efficiency of this start when
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comoared to an initialization procedure which does not utilize

information obtained during the solution of subproblems considered

previously.

4.2 Bounding Test

In addition to the bound check described in the general

branch-and-bound scheme, an additional test to be oerformed during

each phase 2 iteration is introduced. The purpose of this

bounding test is to eliminate needless calculations when the best

solution of the k-parameter subproblem cannot be improved.

In the dual method, basic feasible solutions are available

at each iteration. For a current subproblem consisting of k

parameters, if the objective value of a basic feasible solution,

Zk, is greater-than-or-equal to Zu which is the objective value of
k

the best k-parameter regression found thus far, the current

subproblem need not be solved. This procedure evaluates a node

(or a subproblem) without solving it to optimality. As described

in [121, this bounding test is carried out prior to a simplex

pivot. Thus, the effort of computations is reduced substantially.

5. The Application of the Branch-and-Bound Algorithm Usinq a

Primal Simplex Method

Another linear programming method to evaluate the

subproblems in the branch-and-bound procedure is a primal simplex

approach to problem (2). Since this is a primal method, only the

final basic solution is feasible for (4). Hence, the boundinq

test utilizing the basic feasible solutions in the dual method

cannot be applied. Only the reoptimization start employing the
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primal method will be described here.

The reoptimization orocess is very similar to the start

procedure discussed in the dual approach. The main difference is

the method to obtain the values of the nonhasic variables for the

initial solution of the descendant problem.

If the basic variable, Trs, is selected to become nonbasic

based on (5), the index s will be removed from IB and added to NB.

The initial basis of full rank for the descendant problem, say B,

can be attained by means of the operation described earlier in

Section 4.1 of this paper. However, the values of the nonbasic

variables need to be computed to guarantee feasibility for (2).

Their values are based on the sign of their reduced costs. The

reduced costs of the nonbasic variables are given by:

(6) yj = y - *X j NB

where Xj is the j-th row of X which is the observational matrix.

The dimension of X is n by m(J).

From the reduced costs, the initial values of the nonbasic

variables for the descendant problem are:

(7) T = sign (yj), j c NB

As indicated in Section 4.1 of this paper, the

reoptimization start has its advantage in finding the initial

solution to the descendant based on the results of the parent

problem. The efficiency of this advanced start will be indicated

in the computational tests reported in the next section.
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6. Computational Experience

The branch-and-bound algorithms using the primal (11 and the

dual (21 methods have been programmed in FORTRAN IV. All of the

original information, includinq the observational matrix, is

preserved by the program during execution. All the problems were

solved on the CDC Dual Cyber 170/750 computer at The University of

Texas at Austin Computation Center using an FTN compiler. The

computer jobs were executed during periods when the machine load

was approximately the same, and all solution times are exclusive

of input and output. The total time spent solving the problem was

recorded in central processor seconds by calling a Real Time Clock

upon starting on the problem solution and again when the solution

was obtained.

All the observations for the test problems have been drawn

from various uniform and normal distributions using a random

number generator. The tolerance value for zero was set at 1.OE-8.

The number of parameters may not exceed 20 and the number of

observations may not exceed 300. The user can easily extend these

limitations by changing the dimensions on the appropriate working

arrays in the program. The matrix of observations must have full

column rank. The times are total execution time in CPU seconds

and the number of iterations are updates of the basis inverse.

The branch-and-bound algorithm employing the dual linear

programming approach with the reoptimization start was compared to

an initialization procedure which does not utilize information

obtained during the solution of subproblems considered previously.

Thus, the dual algorithm will require a phase 1 procedure when the
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reoptimization start is not used.Three sets of data consisting of

50 observations on 6, 8, and 10 parameters, respectively, were

drawn from a random number generator. The computational results

indicated that the reoptimization start enables problems to be

solved approximately 10 to 20 times faster than the version of the

algorithm without the advanced start procedure. Thus, all further

comparisons are made with algorithms that include the advanced

start.

The second phase of testing evaluated the implementation of

the bounding test within the dual approach. The testing involved

three codes for comparison purposes. The first code. is the

primal version of the branch-and-bound algorithm with the feature

of reoptimization start. The second code, TDUAL, includes the

strategies of the reoptimization start and the boundinq test in

the dual version of the best subset algorithm. The third is a

version of T[UAL without the option of the bounding test. Several

different sizes of observations on 6, 8, and 10 parameters,

respectively, were randomly drawn. The computational time and

iteration count uniformly indicated that TDUAL is 5 to 10 times

faster than the other two versions.

The final phase of computational testing involved comparing

TDUAL with a code SUBSET written by Narula and Wellington and

based on the algorithm of [13]. SUBSET does contain some options

not available in the TDUAL code. These are the following:

1) Minimum sum of weighted absolute error and minumum sum

of relative error are available as alternate criterion

2) A constant term may be required for all subsets.
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TDUAL and SUBSET are written completely in standard FORTRAN.

SUBSET implements a full tableau approach while TDUAL is based on

a revised simplex method. Both codes utilize Gaussian elimination

for update purposes.

A summary of the computational testing on TDUAL and SUBSET

is given in Table 1. All the solutions obtained by the two codes

matched out to seven significant places. No attempt was made to

evaluate the stability of the codes. As can be seen. the

advantages of the TDUAL code become more apparent as n increases

in size. This can .e attributed to rule (3) for choosinq the

parameter to restrict and the use of the dual algorithm with the

advance start to solve the subproblems at each node.

All the results in Table 1 are for algorithms which

guarantee the optimal regression from each subset. It is possible

(see [10]) to obtain time-accuracy tradeoffs by considering mar-

optimal models. This type of modification is easy to implement in

the computer programs tested here (a single line of FORTRAN code
is changed). The fathoming is based on a function of the current

incumbent other than the objective value. The optimal model is

not guaranteed but savings in solution time can be significant.

Table 2 gives the results of solving a set of test problems with a

requirement that the regression be within 90%, 95% and 98% of the

optimal. Even though only a certain percentage of optimality is

guaranteed, the optimal solution was frequently obtained because

of rule (3) to choose the parameter to remove from a suhprohlem.

For example. when guaranteeing 95% of optimality, the optimal

solution was obtained over 90% of the time.
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7. Conclusion

In this paper a branch-and-bound algorithm to select the

best subset of parameters in linear multivariate regression

problems under the least absolute value criterion is presented.

The algorithm is implemented with strategies involving the

selection rule to restrict a particular parameter the fathoming

test. and the last-in-first-out (LIFO branching rule for the

inspection of the tree. Versions of the algorithm applying a dual

as well as a primal simplex technique procedure were formulated

and tested. A reoptimization start procedure is implemented in

both the primal and dual version of the algorithm. In the dual

version, the feature of a bounding test utilizing basic feasible

solutions is also employed.

As indicated from the computational results, the advanced

start procedure saves considerable computation time. With the

addition of the bounding test in the dual approach, the dual

version of the algorithm is consistently faster than the primal

method, especially on problems where a large number of parameters

are to be examined. In general, the branch-and-bound algorithm

utilizing the dual approach with the advanced start and boundinq

test characteristics is most efficient for finding the best subset

of regressors for least absolute value problems.

A computer code version of the algorithm is available from

the authors for academic purposes.

Acknowledgement: The authors wish to thank Professors S. C.

Narula and J. F. Wellington for providing a copy of their best

subset program for computational comparisons.



17

number of parameters (m)

number of
observationsl

(n) m = 6 m = 8 M = 10
TDUAL SJBSET TDOAL SUBSET TDUAL SUBSET

100 .193 .25 .781 1.12 3.03 5.39
(128) (270) (385) (1351) (1035) (2965)

150 .381 .789 1.16 1.79 3.80 7.37
(249) (486) (659) (839) (1240) (3081)

200 .564 1.16 1.35 3.04 7.28 17.83
(350) (533) (598) (1124) (3200) (5735)

250 .855 2.11 2.61 5.70 8.70 22.52
(468) (849) (1293) (1789) (3460) (5952)

300 1.33 2.85 2.97 6.23 10.46 22 20
(643) (1019) (1202) (1703) (3763) (4906)

Table 1. Computational comparison of TDUAL and SUBSET obtaininq

the best subset for k = 1,2,....m. Three problems were solved in

each combination of m and n. The upper entry in each row is the

mean CPU time in seconds and the lower entry is the number of

iterations.
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Percentage of Optimality Guaranteed

90 95 98 100

number 6 .495 .718 .828 1.33
of (178) (318) (376) (643)
parameters

8 .834 .964 1.60 2.97
(172) (242) (590) (1202)

10 2.61 3.04 5.13 10.46
(250) (512) (1661) (3763)

12 11.11 11.43 12.94 35.85
(246) (389) (1238) (7941)

Table 2: Computational comparison of TDUAL guaranteeing various

percentages of optimality. The upper entry in each row is the

mean CPU time in seconds and the lower entry is the number of

iterations.
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+ 2 - 2 + 24 - + \2 4 2 + -2

(D3 134 12-3 13 124 14 12 0 23 343 4 4

The numbers in each node indicate the indexes of the parameters of a

subproblem. The negative number on the branch indicates the parameter to be

taken out of the model, while the positive number on the branch states that

the paraneter is required to be in the model.

Figure 1: The Complete Tree For A Four Variable Problem
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= , k =1,2,...,

J {1,2,... ,m}
k =m
Let Zk represent the optimal objective
value to the current candiidate problem (CP) with
k parameters.

Take a forward step:

ND NDdescendants

NO

Upate incWTnent

arameters NO Take a backward

forward step:

tw~o descendants

choose the currentYE
CP. Update J

Figure 2: Flowchart for the branch-and-bound algorithm to obtain the best
subset regression.
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